Surface Roughness Scaling of Beryllium Thin Films

R.L. McEachern, E.C. Honea, and G.W. Collins Lawrence Livermore National Laboratory 7000 East Ave. Livermore, CA 94550

Atomic force microscopy data reveal self-affine scaling of sputter-deposited Be films. For films less than 1 μ m thick, the rms surface roughness σ increases with film thickness τ as $\sigma(f < \xi^{-1}) \sim \tau^{\beta}$, and with measurement length L as $\sigma(f > L^{-1} > \xi^{-1}) \sim L^{\alpha}$, where ξ is the surface roughness correlation length and f is the spatial frequency of the surface roughness. For this thin film regime, $\beta \sim 0.5$ and $\alpha \sim 1.4$. For films between 1 and 5 μ m thick, we see evidence of the emergence of a second correlation length and scaling exponent α , indicating a scaling crossover from thin to thick film behavior.

^{*}Work performed under the auspices of the U.S. Department of ENergy by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.